skip to main content


Search for: All records

Creators/Authors contains: "Gholam-Mirzaei, Shima"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent developments in ultrafast laser technology have resulted in novel few-cycle sources in the mid-infrared. Accurately characterizing the time-dependent intensities and electric field waveforms of such laser pulses is essential to their applications in strong-field physics and attosecond pulse generation, but this remains a challenge. Recently, it was shown that tunnel ionization can provide an ultrafast temporal “gate” for characterizing high-energy few-cycle laser waveforms capable of ionizing air. Here, we show that tunneling and multiphoton excitation in a dielectric solid can provide a means to measure lower-energy and longer-wavelength pulses, and we apply the technique to characterize microjoule-level near- and mid-infrared pulses. The method lends itself to both all-optical and on-chip detection of laser waveforms, as well as single-shot detection geometries.

     
    more » « less
  2. null (Ed.)
  3. null (Ed.)